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The present investigation has been performed over a wide range of the dimensionless 
parameters characterizing the process of propagation of pressure perturbations in a 
gas-liquid mixture; these are the Reynolds number, and a dispersion parameter 
responsible for the relation between the values of dispersion and signal intensity. The 
values of the above parameters were changed mainly by varying the initial pertur- 
bation. The results obtained show a complete agreement between the Burgers- 
Korteweg-de Vries model and the real process of propagation of long-wave pertur- 
bations in a liquid with gas bubbles. In  addition to signal propagation with the 
formation of monotonic and oscillatory shock waves, the propagation of signals in 
the form of solitary waves (solitons) and wave packets was observed experimentally. 
Data have been obtained on signal damping, energy dissipation and the influence of 
mixture viscosity on the signal evolution. 

1. Introduction 
Great attention is being given to studying experimentally and theoretically the 

propagation of perturbations in a liquid with gas bubbles. Benjamin (1966), using 
general results of the nonlinear theory of wave propagation, was the first to predict the 
possibility of oscillatory shock-wave formation in a gas-liquid mixture (see also 
Batchelor 1969). He formulated some fundamental problems for further investigation. 
Wijngaarden (1968), using the Korteweg-de Vries equation, predicted the possibility 
of finite-duration signal propagation in the form of solitons and oscillatory wave 
packets. Nakoryakov, Sobolev & Shreiber (1972), Wijngaarden (1972), Noordzij 
(1973) and Nakoryakov et al. (1975 b)  suggested that the propagation of perturbations 
in a liquid with gas bubbles should be considered on the basis of the Burgers- 
Korteweg-de Vries equation (BKV). The difference between the BKV and Korteweg- 
de Vries equations is that the former takes into account energy dissipation. Depending 
on the correlation between dissipation, wave dispersion, nonlinearity, signal duration 
and intensity, the BKV equation predicts the possibility of signal propagation in the 
form of shock waves, solitons, monotonic and oscillatory waves and formations shaped 
mainly by viscous forces. 

Kutateladze et al. (1972) and Noordzij (1973) f i s t  showed the possibility of experi- 
mental realization of an oscillatory shock wave. Up to now the propagation of the 
signal in the form of solitons, wave packets and ‘viscous ’ triangular profile formations 
in a liquid with gas bubbles has not been detected experimentally. The limits of 
applicability of Korteweg-de Vries, Burgers-Korteweg-de Vries and Burgers approxi- 
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mations have not been studied either. This article presents experimental results from 
a study aimed at the qualitative verification of the basic conclusions resulting from 
the theory of the above equations. 

2. BKV approximation for perturbations in a liquid with gas bubbles 

gas-liquid mixture the BKV equation was obtained by Nakoryakov et al. (1975b): 
To describe the evolution of perturbations propagating in the same direction in a 

aU/aT + u[i + (7 + 1 )/2$,1 (au/aE) - v(azu/ap) + ~ a 3 ~ / a g 3 )  = 0, (1) 

where u is the velocity, 7 the time,"* the co-ordinate, co = (yPo/po$o)8 is the low- 
frequency sound velocity, P is the pressure, p the density, rj4 the volumetric void 
fraction and y the adiabatic exponent. The effective viscosity coefficient 7, which is 
conditioned by viscous, acoustic and heat losses due to the pulsations of single in- 
clusions, can be calculated using the work of Devin (1959), Nakoryakov et al. (1972) 
and Noordzij & Wijngaarden (1974). The formula is 

(2) 

F 

7 = 4vi/3$0(1- $0) + YRoctICi + [3(Y - 1)/21 (2a/o)ict/oRo, 

where vl and ci are, respectively, the kinematic viscosity of the liquid and the sound 
velocity in the liquid, w is the resonant frequency of the bubbles, a the coefficient of 
thermal diffusivity in the gas, R, the radius of the equilibrium bubble and 

the coefficient of dispersion. The subscript 0 here and elsewhere denotes the un- 
perturbed state. 

When considering nonlinear waves, we are abIe to proceed from the linearized 
hydrodynamic equations of Rudenko & Soluyan (1975). Thus the conditions of 
applicability of the BKV equation take the form 

AP/Po - u/co$o N Ap//Jorj40 - E < I .  (3) 

Equation ( 1 )  is written in a co-ordinate system moving a t  speed co and all the terms 
of the equation are of the same order of magnitude and of order s2. Hence one can 
pass from (1)  to an equation for the pressure perturbation A P  by a simple relation: 

(4) 

( 5 )  

AP = \(pc)du w p o ~ o ~ + ~ ( ~ 2 ) .  

For the pressure perturbations, (1)  takes the form 

ap/aT+ [I + (y+  1 ) / 2 ~ , 1 ( A ~ ~ p , c , ) a P ~ a ~ - ~ a 2 ~ ~ a ~ 2 + ~ a ~ ~ ~ a ~ ~  = 0. 

ap */a7 + P * ap *lag - 7a2p *lap + p a 3  P *lap = 0. 

Introducing the function P* = [1+ (y  + l)/2~o]AP/poco, we obtain an equation in the 
form 

This equation can readily be transformed to dimensionless form by introducing the 
length of the initial perturbation lo as a characteristic dimension and the amplitude 
of the initial perturbation uo(6) as a characteristic velocity uniquely related to the 
initial pressure perturbation in the mixture APo(g) by 

(6) 

uo(0 = A ~ O ( ~ ) / P O C O .  (7) 
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FIQURE 3. Perturbation profile for u = 30 and u/Re = 0.1. 

Initial perturbation P(0, [) = exp( -&. 

Equation (6) in its dimensionless form is 

Here 
@/a? + P aP/aE - Re-f PP/@ + V-2 a3P/ap = 0. 

i: = ruo/lo, E = g/lo,  Re = uolo/r, u = lo(uo/p)4, 

fJ = P*poco/[l + ( y+  l)/2#o]APo = AP/AP,. 

At large Re or small u, (8) takes the form of the Korteweg-de Vries equation: 

a P p  + P aPpg + C-2 a3Ppp = 0. (9) 
The basic properties of the solution of (9) which has been studied comprehensively 
are widely known (Berezin & Karpman 1966; Zabusky & Kruskal 1965). In  partiou- 
lar, it  is known that there exists a critical value of u, which we denote by uc, at which 
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FIQURE 4. Perturbation profile for CT = 50 and u/Re = 0.33; P(0, g) = exp( - p). 
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FIUURE 5. Perturbation profile for u = 30 and u/Re = 1.5; P(0, c) = exp (-p). 

the solutions of (9) change qualitatively (Berezin & Karpman 1966). Thus for u > uc 
the initial perturbation breaks up into solitons (figure l),  their number being deter- 
mined by the value of the parameter u. The value a, can be calculated for any kind of 
initial perturbation from Berezin & Karpman (1966).  At u < uc the solutions have 
the form of an oscillatory wave packet (figure 2). At r values close to u,, the initial 
perturbation breaks up into both solitons and wave packets. If the initial perturbation 
is negative, i.e. it  is of the form of a dilatation wave, (9) has only wave packets as 
solution (Hammack & Segur 1974). 

The above properties hold in the BKV equation as well. For this equation a t  
u/Re < 1 there is also a specific value u = uc which changes the structure of the 
solution. 

With increasing u1Re the nature of the solution of (8) changes qualitatively. Figure 
3 shows the evolution of the initial perturbation with a t  uIRe = 0.1. In this case the 
perturbation does not break up into single solitons but produces a wave with a tri- 
angular profile with an oscillating structure. 

At large r and small Re, (8) takes the form of the Burgers equation: 

a P p  + Paplag = ( i / B e )  a2 PI@. (10) 
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FIGURE 6. Perturbation prome for u = co and u/Re = 0.1. 
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FIUURE 7. Perturbation profile for u = 00 and a/Re = 2. 
The initial perturbation is a ‘step’. 

In  accordance with (8), the signal, depending on the Reynolds number, either will 
propagate as a formation which is blurred by the linear equation of thermal diffusivity 
or will become steeper resulting in a shock discontinuity (Rudenko & Soluyan 1975). 

Figures 4 and 5 represent the results of integrating (8) first for a/Re = 0.33 and 
cr = 50, and second for cr/Re = 1.5 and cr = 30. As is seen, even though cr > crc, no 
break-up of the perturbation into solitons is observed and the perturbation evolves 
(figure 4) according to the nature of the solution of (10). 

Equations (9) and (10) do not provide solutions of the oscillatory shock-wave type. 
This solution can be obtained from (8) only. 

The analysis by Sagdeev (1964) of a stationary form of (1)  in which the perturbation 
evolved only in time (for application to plasma waves) showed the possibility of 
the formation of stationary shock waves of monotonic and oscillatory structure. The 
criterion that determines which structure is realized is: for cr/Re > J2, the structure 
is monotonic and for a/Re < 4 2  it is oscillatory. 



90 V .  V .  Kuznetsov, V .  E .  Nakoryakov, B.  G .  Pokusaev and I .  R.  Shreiber 

r- 7 

0.8 1 .O 1.2 
R,x  10-3(rn) 

FIaURE 9 

’, 
4 5 

O F  

FIGURE 8. Schematic diagram. (1) Bubble generator. (2) Test section. (3) High-pressure chamber. 
(4) Diaphragm fixing. (5) Pressure transducer. (6) Intensifier. (7) Diaphragm breaker. (8) Pulse 
delay line. (9) Oscilloscope. 
F I a m  9. Distribution of bubble sizes. CO,, R, = (1.06 0.03) x m. 
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Nakoryakov et al. (19753) using numerical integration of (8) showed the above 
criterion to be applicable to the analysis of non-stationary shock waves in a liquid 
with gas bubbles. An example of the numerical integration of (8) a t  u1Re = 0.1 
and vlRe = 2 is presented in figures 6 and 7, respectively. Nigmatulin, Khabeev & 
Shagapov (1974) also investigated numerically the shock-wave structure in a gas- 
liquid medium. 

2 

3. Experimental study of the structure and dynamics of perturbations 
To clarify the nature of perturbation propagation in a gas-liquid mixture for u 

greater than and less than its critical value vc, laboratory experiments were carried 
out with the set-up schematically shown in figure 8. The vertical tube is 53mm I.D. 

and 3m long. Along the working section (2), which is optically transparent, piezo- 
electric pressure transducers are placed flush with the tube wall. The transducer 
signal was displayed on the oscillograph and then processed. The velocity of the 
perturbation propagation was determined by the time taken for the pressure pertur- 
bation to traverse the distance between two probes. The medium under study which 
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filled the test section of the tube was generated by saturating the working liquid with 
gas bubbles by means of a bubble generator ( 1 )  located in the lower part of the tube. 
A water-glycerine solution with vl = 1.8 x 10-5m2/s and p, = 1-18 x 103kg/m3 used 
as a working liquid made it possible to produce spherical bubbles of practically the 
same size slowly emerging a t  a velocity of 2-3 cm/s. The histogram of the distribution 
of bubble sizes is presented in figure 9. Bubble size was measured photographically 
and cinematographically. The average volumetric void fraction was determined by 
the change in the height of the liquid column when introducing gas bubbles. The local 
values of rjh, and R, in the test section were calculated from the observed average 
value of rjh and from a measured R ,  assuming a hydrostatic pressure distribution in the 
mixture under isothermal conditions, taking account of the hydrostatic liquid column. 

Carbon dioxide and helium, with coefficients of thermal diffusivity a equal to 
1.03 x 10-6m2/s and 18.1 x 10-5m2/s, respectively, were used as working gases. The 
use of different gases ensures more than a ten-fold change in the coefficient of the 
effective viscosity T,I (when we remember that y changes as well as a) .  

The perturbing pulse was produced by breaking the diaphragm (3) separating the 
high-pressure chamber (4) from the test section. By changing the length of the high- 
pressure chamber, it  is possibIe to vary the duration of the initial pulse I, and to study 
the features of the propagation of both the shock waves and the finite pressure per- 
turbation in a gas-liquid medium. The diaphragm was placed at a distance of l m  
from the upper level of the medium, so that the reflected waves did not influence the 
structure of the signal investigated. 

Figure 10 (plate 1 )  shows characteristic oscillograms of the pressure perturbation 
in a liquid with CO, bubbles, while table 1 lists the parameters of the perturbations; 
here AP, is the intensity of the initial pressure perturbation, AP, is the current inten- 
sity and L is the distance from where the perturbation entered the medium. Figure 
10 (a) represents the characteristic shape of the initial perturbation which can further 
develop into the perturbations shown in the oscillograms of figures lO(c-f). The 
oscillogram of figure 10(b )  pertains to the step perturbation. The critical value uc for 
the initial perturbation in figure lO(a) is equal to 14. As seen from table 1, the con- 
dition u/Re 4 1 was met for all the experiments presented in figures lO(c-f) and in 
this case the evolution of the pressure perturbations is in good agreement with the 
main conclusions of the theory for equation (9). 

Indeed, at u > uc the initial perturbation breaks up into a sequence of solitons 
(figures lOc, d )  whose number can be found from the formula (Berezin & Karpman 
1966) 

N = 2 ~ / 3 n , / 6 .  (11) 

Thus at u = 53, from (1 1) i t  follows that N = 5 ;  this corresponds to the number of 
solitons observed experimentally, see figure lO(c). With a decrease in u the number 
of solitons diminishes, as in figure 10 (d) ,  and at u z uc the initial perturbation produces 
only one soliton, as in figure l O ( e ) .  At u 4 uc the initial perturbation transforms into 
an oscillatory wave packet (figure l O f ) .  

Figure 11 shows experimental results on the way the velocity of solitons and wave 
packets in a liquid with CO, bubbles depends on their amplitude. The perturbation 
velocity averaged over a 0.8 m segment was measured. The middle of this segment was 
as far as 1 m from the upper level of the medium. Presented here also is a calculation 
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FIQURE 11. Velocity of pressure perturbation in a liquid with CO, bubbles. R, = 1-36 x 
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lation from (12) at y = 1.22. 
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FIGURE 12. Dependence of the half-width of solitons on their amplitude. ( l ) ,  
L = 0.6 m, Po = 1.07 x lo5 N/m2, R, = 1.38 x (2) 
(13) for y = 1.3. (4) calculation from (14) for y = 1.3. 
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from the known dependence (Berezin & Karpman 1966) for the velocity of solitons, 
which for a gas-liquid medium is of the form 

where AP, is the amplitude of the solitary wave. Formula (12) describes the experi- 
mental results a t  y = 1.22. This is close to the value of the adiabatic exponent for 
CO,, y = 1.3. From the diagram it also follows that the velocity of wave packets is 
close to the low-frequency speed of sound in the medium. 

Figure 12 presents, in dimensionless co-ordinates, the dependence of the half-width 
of a solitary wave upon the perturbation intensity and it also presents a comparison 
of the experimental wave profile with the theoretical shape of the soliton 

AP(x) = AP,sec h2(x/S), 

u = toll + (Y + 1)APm/6YPol, (12) 

(13) 
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FIQURE 16. Variation of the perturbation amplitude along the working section. Gas CO,;  L = 0; 
Po = lo5 N/m*; R, = 1.41 x 10-3 m; g5, = 1.11 x 10-2. (1) Shock wave, AP, NN 0.3 x N/ms. 
(2) Single soliton, AP, x 0.4 x 106 N/m2, c x 11. (3) Wave packet, A P  x 0-13 x lo5 N/ma, 
u m 3.1, g w  He, L = 0, Po = 106N/ma, R, = 1 . 2 7 ~  lO-Sm, g5, = 1.11 x (4) Soliton, 
AP, = ( 0 ~ 3 + 0 ~ 5 ) x l O ~ N / m ~ , c  x ll.(6)Wavepacket,AP0 = (0.09+0.16)x 105N/m2,cr s 2-2. 

where the half-width of the soliton, determined at the level 0-42 AP,, is equal to 

8 = [4Y/(Y + ~)14(~0/A~m)4R0/&.  (14) 

The character of the evolution of an initially triangular perturbation in a liquid with 
He bubbles is shown in figures 13-15 (plates 2 and 3). The use of He bubbles enables 
one to obtain high values of u1Re owing to the appreciably increased 7. As seen from 
the oscillograms presented, the dissipative losses greatly influence the amplitude and 
the structure of pressure perturbations. Thus for u > ac (figure 13) the initial pertur- 
bation does not break up into solitary waves as in the case u/Re < 1, but produces 
an oscillatory shock wave of triangular profile with length-damped oscillations. 

For u B re (figure 14) a soliton produced in this medium tends to spread out, the 
front edge naturally spreading out much slower. The formation of the wave packet a t  
small a < a, (figure 15) is barely discernible, and the initial pulse is likely to spread 
out according to the solution of the Burgers linear equation. 

Figure 16 presents the variations in the signal intensity along the tube in media 
with He and CO, bubbles. Given here are the experimental results for wave packets 
(a < rc), single solitons (a S ac) and shock waves formed by an initial step perturba- 
tion. A very strong decrease in the signal intensity takes place during the formation of 
wave packets. In  this case the formation zone, shown qualitatively as dashed lines in 
the plot, produces an ‘atomization’ of the initial perturbation with the conservation 
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FIUDRE 17. Damping of the soliton amplitude with length. Gas CO,, Ll = 0.6 m, L, = 1.4 m. 
(1) Experiment. (2) Calculation from (15) for a = 6 s-l, 7 = 3.3X 10-8mz/s, y = 1.3, B = 
0.34 x lo-* m5/s. 
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FIGURE 18. Damping of the wave packet along the test section. Gas CO,; u < u,. Experiment: 
(1) L, = 0.6 m, L, = 1.4 m; (2) Ll = 0.63 m, L, = 1.78 m. (3) Calculation from (16) for 7 = 
2.9 x 10-2 m2/s, 01 = 6 s-l, y = 1.3. 

of its pulse. With a shock wave the reconstruction of the perturbation structure 
produces an oscillatory shock wave, the amplitude of the first oscillation being 
greater than the pressuregradient in the initial perturbation (figure 16, graph (1)). The 
damping of the solitons and wave packets is conditioned by dissipative losses. In  fact, 
in a liquid with He bubbles (figure 16, graphs ( 4 )  and (5)) the pressure perturbations 
damp more intensively than they would if the bubbles contained CO, (figure 16, 
graphs (2) and ( 3 ) ) .  

Figures 17 and 18 show experimental results on the damping of solitons and wave 
packets formed in a liquid with CO, bubbles. Measurements were carried out in a 
0-8m segment. As is seen, the damping of solitons is adequately described by a 
relation due to Pelinovsky (1971) and Otto & Sudana (6970) with q = 3.3 x 10-2m2/s: 

APm(L,) = APm(Ll) exp ( - 4uAL/3U) 

x (1 + (y+  l)c,APm(L,)q[l -exp( -~UAL/~U)]/~O~~~P,,(L,))-~. ( 1 5 )  

The damping of wave packets is described by a formula due to Pelinovsky (1971) 
with q = 2.9 x 10-2m2/s: 

AP,(L,) = APm(L,) exp [ - (u + 47r2q/h2)AL/U]. (16) 
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Here a = pgc,/2P0(L,) is the low-frequency absorption factor taking account of the 
density variation with the tube height, which can be calculated as is done by Noordzij 
& Wijngaarden (1974) ; h is the wave-packet wavelength. 

The analysis of the plots in figures 17 and 18 shows that from a rough account of the 
dissipative losses via the damping decrement of the inherent bubble oscillation the 
effective viscosity coefficient for the medium can be evaluated. Also it is the first time 
that pulse propagation in a medium containing bubbles has been detected as solitary 
waves and wave packets. The long-wave perturbation in this medium is shown to 
obey the regularities resulting from the theory of the Korteweg-de Vries-Burgers 
equation. The results obtained may be used to analyse the dynamics of waves passing 
through two-phase media and to simulate plasma processes by those in gas-liquid 
media. 

The authors acknowledge the assistance of Gasenko V.G. (Institute of Thermo- 
physics, Siberian Branch of the USSR Academy of Science), who kindly supplied the 
results of the numerical calculation of the BKV equation. 
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(a) (b) 

FIGURE 13. Evoliition of the multi-soliton perturbation in a liquid with He bubbles. 
5 = 3 6 ;  a/Re = 0.14; AP, = 1-74x lo5 N/m2; I ,  = 0.15 m. 

P, x 10-5 
I; (in) (N/m2) 9, x lo2 R, x lo3 (in) AP,/AP, 

(4 0.6 1-07 1-03 1.24 0.47 
(b )  1.4 1-16 0.95 1.21 0.16 

FIGURE 14. Evolntion of a single soliton in a liquid with He bubbles. 
5 = 13.1; a/Re = 0.21; AP, = 0-628 x lo5 N/m2; 7, = 0.09 m. 

r, x 10-5 
L (111) (N/m2) Ru x loR (m) 4,x lo2 APn, lap, 

(4 0.6 1-07 1.24 1.03 0.415 
( h )  1.4 1.16 1.21 0.95 0.149 
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FIGURE 15. Evolution of portiwbation at r < gG in a liquid with He bubbles. 
0- = 2 - 2 ;  afRe = 0.46; A P o  = 0.148 x lo5 N/m2; to = 0-033 m. 

p0 x 1 0 - 5  
L (m) (N/m2) R, x lo3 (m) q30 x lo2 

(a)  0.6 1.07 1.24 1.03 
( b )  1-15 1.13 1.22 0.98 

Plate 3 
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